
Simplified Method to Predict Mutual Interactions of
Human Transcription Factors Based on Their Primary
Structure
Sebastian Schmeier, Boris Jankovic, Vladimir B. Bajic*

Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia

Abstract

Background: Physical interactions between transcription factors (TFs) are necessary for forming regulatory protein
complexes and thus play a crucial role in gene regulation. Currently, knowledge about the mechanisms of these TF
interactions is incomplete and the number of known TF interactions is limited. Computational prediction of such
interactions can help identify potential new TF interactions as well as contribute to better understanding the complex
machinery involved in gene regulation.

Methodology: We propose here such a method for the prediction of TF interactions. The method uses only the primary
sequence information of the interacting TFs, resulting in a much greater simplicity of the prediction algorithm. Through an
advanced feature selection process, we determined a subset of 97 model features that constitute the optimized model in
the subset we considered. The model, based on quadratic discriminant analysis, achieves a prediction accuracy of 85.39% on
a blind set of interactions. This result is achieved despite the selection for the negative data set of only those TF from the
same type of proteins, i.e. TFs that function in the same cellular compartment (nucleus) and in the same type of molecular
process (transcription initiation). Such selection poses significant challenges for developing models with high specificity, but
at the same time better reflects real-world problems.

Conclusions: The performance of our predictor compares well to those of much more complex approaches for predicting
TF and general protein-protein interactions, particularly when taking the reduced complexity of model utilisation into
account.
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Introduction

The transcriptional regulatory machinery that acts on the

transcription of genes is complex and not yet completely

understood. Transcription factors (TFs) are proteins that regulate

transcription initiation of genes by binding to regulatory regions

on genomic DNA [1]. They exert their function in the nucleus of

cells where they often work cooperatively through the formation of

TF complexes to enhance or repress transcription initiation [2,3].

To better understand the elaborate transcriptional machinery that

acts within the cell nucleus, it is essential to determine these TF

interactions. The combinatorial regulation of transcription

initiation has been studied extensively [4–9], where groups of

TFs that work cooperatively in the transcription of genes or gene

groups were identified. The combinatorial regulation described in

[4–9] does not necessarily entail the physical interaction of the

participating TFs although this is frequently required.

Protein-protein interaction (PPI) prediction has gained much

attention over the last decade. Various methods and tools for the

prediction of pairs of proteins that can interact have been

developed [10–14]. These methods make use of manifold

properties of proteins and combinations thereof, such as functional

categorisation and gene ontology annotations [15], primary

structure [16–20], secondary, tertiary structure, and protein

domain information [11,12,14,21–24], ortholog-based and phy-

logeny-based profiles [25,26], gene expression and other experi-

mental data [27], as well as text mining [13,28].

Predicting TF interactions can be seen as a subclass of the

general PPI prediction problem that is more complex, because

members of TF families are often sequence-wise similar to each

other [29]. Deriving prediction models from data sets with similar

examples is inherently difficult [30,31]. Furthermore, TFs exert

their function as regulatory proteins of transcription initiation in

the same cell compartment, the nucleus, making it impossible to

utilise cellular localisation as a criterion in prediction. Many of the

published PPI prediction methods use exactly this localisation

feature to construct negative TF pairs. If models derived in such

manner have higher accuracy, this may be attributed to potentially

disparate characteristics of proteins from different cellular

locations (e.g. mitochondrial proteins and those functional in the

cell nucleus) thus making classification easier. Examples in our

negative set are from the same cellular compartment. Finally,
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information about known TF interactions is relatively scarce

compared to PPIs.

Previous approaches for deciphering the combinatorial control

of TFs have included co-expression analysis [32], thermodynamic

models based on time-course microarray data [33], relationships of

TF binding sites (TFBSs) [34,35], and combinations of these

methods [36]. To aid future research on combinatorial gene

regulation, our study presented here aims at predicting TF

interactions computationally. As with computational PPI predic-

tions, a good representation (e.g. feature vector) for an interacting

TF pair has to be found. The former mentioned methods used

information for such representations that is often difficult to

acquire. To circumvent this obstacle, the approach we applied

here is based on protein sequence information alone, which

significantly simplifies application of our method. The present

analysis shows that even with limited prior knowledge about TFs

and under stringent conditions imposed on the system, it is

possible to achieve prediction performance that compares well to

those of more complicated approaches. Our analysis utilises amino

acid (AA) properties of TF primary sequences and combines these

into a representation for TF pairs. The artificial intelligence system

employed to predict if a pair of TFs can interact is based on

quadratic discriminant analysis (QDA) [37]. We employed a 10-

fold cross-validation (CV) to select the most discriminative set of

features used for building the predictive model in order to reduce

model complexity and improve its robustness. We used forward

feature selection method with a wrapper [38]. This process

identified 97 such model features out of more than 3000. The 10-

fold CV shows that the expected accuracy of the system we

propose here achieves 82.04%. An evaluation of the final model

on a completely blind set (i.e. a set not used in training and CV)

revealed an accuracy of 85.39% (specificity of 83.93% and a

sensitivity of 86.92%).

Methods

Data Preparation
The set of human TFs from a current collection, based on DNA-

binding protein domains, was extracted [39]. In addition, 70

additional proteins from TRANSFAC Professional database

(version 11.4) [40,41], which were not in the aforementioned list

of TFs, were hand-curated. After manual inspection, 34 of these

were included in the list of TFs. Finally, all identifiers were mapped

to Uniprot identifiers. The final set of TFs consisted of 1,372 TFs.

PPI were extracted from four public interaction databases

(MINT [42], IntAct [43], BioGRID [44], and Reactome [45]).

Only interactions of the following PSI-MI (Molecular interaction

standard of the Proteomics Standards Initiative) types were taken

into consideration [46]:

N MI:0195 (covalent binding)

N MI:0407 (direct interaction)

N MI:0915 (physical association)

Using TFs from above as a foundation, 1,237 TF interactions

were extracted from the four databases. The number of TFs

comprising these interactions was 508.

Examples of false (negative) TF interactions were generated by

randomly associating two TF entities from the 1,372 TFs. Three

different classes of negative TF pairs were generated based on

information in the above-mentioned databases:

i/ ‘Absolute’ negatives: TF-TF pairs are generated from TFs not

known to interact with any other protein.

ii/ ‘Partial’ negatives: TF-TF pairs are generated taking one TF

that is known to interact with other proteins, while the other

TF is taken from the group of those not known to interact

with other proteins.

iii/ ‘PPI negatives’: Both TFs that form a TF-TF pair are known

to interact with other proteins, but the pair itself is not known

to mutually interact.

Three groups of such presumed negative interactions were

generated. 412 TF interactions from each group were selected at

random, resulting in a set of 1,236 negative TF interactions. These

were comprised out of 1,147 different TFs. During training,

negative examples were drawn from the three groups described

above. Each group contained 412 samples, thus, forming the

negative training set of 1236 samples.

A BLAST [47] database of all sequences of the TFs that

comprise the positive (known) interactions was created. A BLAST

search against TFs in the same database was conducted in order to

find those TFs with high sequence similarity (based on score and

identity values reported by BLAST). All pairs of TFs that had

identity greater than 80 percent were selected and then used in the

following way: Let A and A9 represent two TFs with a high

sequence similarity. Common binding partners between these in

the positive set of interactions were then identified. Let B be one

such partner for both A and A9 and let them form interactions A-B

and A9-B. One of these was then excluded, for example A9-B, from

further consideration. In this manner a potential for redundancy of

the TFs as participating partners in TF interactions was reduced.

Following this reduction strategy, 1,182 interactions in the positive

set were retained. The number of TFs comprising these

interactions was 508. Applying the same methodology for

sequence identity to the negative set of interaction, no cases that

warranted exclusion based on sequence identity were found.

Feature Representation and Feature Vectors
The AAIndex database [48] (URL: www.genome.jp/aaindex/)

contains biochemical and physicochemical properties for AAs

reported in the scientific literature. In total, the database at the

time of download contained 544 AA properties. Only those

properties that were available for all 20 AAs were selected for our

analysis. This reduced the number of properties to 531 (see Table

S1).

The feature vectors were compiled as follows. Consider a

sequence s of AAs. The representation Fs for s consists of 531

features fp, each representing the mean of one of the 531 AA

properties p over s, Fs = (fp1,… fp531). An individual feature fp for

AA property p was calculated as the mean value of p across AAs in

the protein sequence. Thus, any sequence s, disregarding its length

was represented with the same length of feature representation

vector. If an AA in the sequence was ‘‘X’’ or ‘‘U’’, then the AA

was disregarded from the averaging process and the sequence

length was correspondingly reduced.

It is known that different areas in a protein sequence serve

different purposes, for example, it is known that a protein

sequence has a C-terminal and N-terminal part, which for

themselves have specific properties [49,50]. In order to capture

these differences to some degree in our model, we split the linear

protein sequence into the three parts. After careful consideration it

became apparent that a split of 20%, 60% and 20% of the protein

sequence yielded reasonable results. The first 20% segment is

aimed at representing the functionality of the N-terminus, while

the last 20% segment represents in our model the C-terminus. In

order to create the feature representation Ft of a single TF t, its AA

sequence s was thus divided into three sections, the start section ss

Predicting Human Transcription Factor Interactions
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(N-terminus), the middle section sm, and the end section se (C-

terminus) comprising of 20%, 60% and 20% of protein length

respectively as described. Feature representation was calculated for

each section and represented as a vector Fs, with the feature vector

of a TF Ft being the concatenated vector of Fss, Fsm, and Fse:

Ft~½Fss,Fsm,Fse�

This results in 1,593 features for a single TF. The feature vector

for a TF pair t1:t2 consists of two concatenated feature vectors for

each participating TF, Ft1:t2 = [Ft1, Ft2] consisting of a total of

3,186 features (1,593 from each TF comprising the interacting

pair). In order to avoid multiple different representations of the

same TF interaction pair caused by symmetry of the interaction,

the following condition was imposed for concatenation. Consider a

TF interaction between A and B, where A and B are two TFs, then

the first vector is always the one for the TF with the smaller

molecular weight. Assume that in the interaction above, B is the

TF with the smaller molecular weight, then the interaction

between A and B is always expressed as B-A. In this manner, the

resulting feature vector for a TF interaction is always unique.

Classification algorithm
We used classification based on quadratic discriminant analysis

(QDA) [37]. The algorithm is implemented in MatlabH [The

MathWorks Inc., Natick, Massachusetts] as a part of its built-in

function ‘classify’. Input data were sets of feature vectors for

positive and for negative examples.

Feature Selection and Model Optimization
Our goal was to select the minimal number of features that still

provided good classification performance. In order to select features

that are most relevant for distinguishing positive and negative

examples, forward feature selection [38] by a wrapper algorithm

with the QDA-based classifier was used. This was applied in a 10-

fold CV that also permitted the estimation of the classifier’s

performance. In our implementation of the wrapper algorithm the

best individual feature was first selected based on the CV

performance. Then, to determine the next feature, which would

produce the best QDA performance when used in conjunction with

the already selected feature, all combinations of the first selected

feature with all remaining ones were tested. This testing was

performed with the 10-fold CV and the best performing feature was

added to the previously selected list. This iterative process was

repeated by gradually adding one feature at a time. The feature

selected after each iteration step was the one such that the feature list

that includes that selected feature averaged best performance across

all CV folds compared to other feature candidates. The same data

fold partitions were preserved during the process. This allowed for

the simultaneous estimation of the QDA classifier performance as

well as selection of the best combinations of features. We tested

combinations of features up to a total of 150 features.

Performance Evaluation
We used several performance measures to judge the perfor-

mance of a classification system [51]. Table 1 shows a confusion-

matrix of possible outcomes of a prediction with respect to the

actual class of the classified example. The performance measures

of the classifier are defined in Table 2.

Results

For the complete set of positive (1,182) and negative (1,236) TF

interactions (1,182+1,236 = 2,418), all 3,186 features were extract-

ed and the feature vectors created (see Materials and Methods).

The set of 2,418 positive and negative TF interaction feature

vectors were randomly split into eleven groups, preserving

approximately the same ratio of positives and negatives within

each group. Ten groups were used for feature selection and model

evaluation utilising a 10-fold CV (see Materials and Methods). The

eleventh group was retained as a completely independent test set

of positive and negative interactions. The feature selection was

performed as described in Materials and Methods and the best

results were achieved with 97 features (see Figure 1, Table S2).

Table 3 shows the results using 10-fold CV with the selected 97

features. The average CV accuracy of the method is 82.04%,

while having a specificity of 88.61%, and a sensitivity of 76.45%.

Finally, we chose the 97 features that jointly performed best within

the CV and we created a model from all feature vectors used for

the CV. This model was then applied to the eleventh group of

feature vectors that has not been used for either feature selection

or creation of the QDA model. On this blind set, our model

achieved an accuracy of 85.39% and F-measure of 85.32%, while

the specificity was 83.93%, the sensitivity was 86.92%, and the

precision was 83.78%.

Discussion

The task of predicting TF interactions is comparable to the

task of predicting PPIs. Most methods for predicting PPIs use a

great deal of information to represent protein pairs for

computational inference of their mutual binding. Prediction of

general PPIs has been done before only from sequence

information to circumvent the obstacles of the requisition of the

multitude of other data [16–19]. Bock et al. [16] made use of k-

mers of AAs to infer PPIs by AA properties and Shen et al. [18] by

k-mer frequencies. The former method made use of a small

selected set of AA properties and an undefined method for

reducing the feature space of the PPI representation to avoid the

Table 1. Confusion Matrix.

Actual class

Positive Negative

Predicted class Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

The table indicates the nomenclature for an outcome of a prediction relative to
the actual value.
doi:10.1371/journal.pone.0021887.t001

Table 2. Performance measures.

Measurement Equation

Precision TP/(TP+FP)

Sensitivity (Recall) TP/(TP+FN)

Specificity TN/(TN+FP)

False Discovery Rate (FDR) FP/(FP+TP)

Accuracy (TP+TN)/(TP+FP+TN+FN)

F-measure 2 * Precision * Sensitivity/
(Precision+Sensitivity)

The table shows the performance measures used. TP: True positives; FP: False
positives; TN: True negatives; FN: False negatives.
doi:10.1371/journal.pone.0021887.t002
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problem of having vectors of different length, due to different

protein sequence lengths. The latter method only focuses on

frequencies of AA triads that have been classified into groups of

AAs with similar properties, and a newly proposed kernel method

to circumvent the problem of symmetry of feature vectors

(Protein1-Protein2 equals Protein2-Protein1). Pitre et al. [17]

utilised the PAM120 similarity matrix to compare and score short

AA sequences of individual partners of a hypothetical interaction

with the sequences of proteins that are known to interact. Guo

et al. [19] used a fixed set of seven distinct physicochemical

properties to construct feature vectors based on auto covariance

and thus circumvent the problem of vectors that differ in length.

On the other hand, they did not address the problem of

symmetry in protein pairs. Van Dijk et al. [20] focused on specific

TF families and utilised short motif sequences found in sequences

of TFs to predict specific TF interactions with the help of a

random forest feature selection approach.

Our proposed method utilises only primary protein sequences to

build a representation for a TF interaction pair without any

additional prior knowledge to minimise the complexity in feature

vector generation. The technique applied here for representing

features is based on an averaging scheme of AA properties.

Because the methodology is simple, it might obscure certain

domain specific properties. This is particularly so as few residues

are involved in the actual interactions, though the surrounding

parts could play a role in the recognition of binding sites. Thus,

most parts of the protein sequence are not necessary for the

interaction and thus their influence to the averaged values might

hamper the performance.

For a given AA sequence and an AA property X, we calculated

the corresponding model feature as an average of X for individual

AAs that the sequence comprises of. When we calculated such

model feature, for example for the N-terminal and C-terminal

parts of the sequence, we regarded these two averages as two

distinct model feature values of the TF. Hence, even though these

may appear to be the same features, in our model they are clearly

distinct model features. Out of 3,186 such model features that we

used for representing TF interacting pairs, our method selected a

combination of 97 model features that resulted in the best

prediction performance during 10-fold CV (see Figure 1). With the

set of model features reduced to 97, our QDA-based method was

able to achieve ,85% accuracy in separating true from negative

TF interactions based on a completely independent set of TF

interactions.

In comparison, the performance of other approaches described

above that are based on primary sequence alone to predict either

PPI or TF interactions, achieved a prediction accuracy of around

80% (see Table S3). Several observations could be made on this

point.

Bock et al. [16] obtained ,80% accuracy for predicting PPIs

from DIP with no preference on the organism. The negative

examples were created by randomly shuffling AA sequences from

DIP, while preserving AA composition and di– and tri-peptide ‘k-

let’ frequencies. The method for creating negative examples only

shuffled sequences from interacting proteins sampled from DIP,

which hampers the variety of negative examples.

Shen et al. [18] achieved 83.9% accuracy for the prediction of

human PPI. Here the training set was larger than the training set

Figure 1. Feature vector length versus accuracy, specificity and
sensitivity. The figure shows for different feature vector lengths,
selected through the feature selection algorithm explained above, the
average accuracy, sensitivity and specificity of the 10-fold CV. The
model that uses 97 features (red dashed line) achieves the best
accuracy of 82.04% while having a sensitivity of 76.45% and a specificity
of 88.61%.
doi:10.1371/journal.pone.0021887.g001

Table 3. Cross-validation results.

Fold Sensitivity Specificity Precision FDR Accuracy F-measure

1 75.21 90.91 91.00 9.00 82.27 82.35

2 80.34 92.16 92.16 7.84 85.84 85.85

3 80.51 88.24 88.79 11.21 84.09 84.44

4 80.34 80.39 82.46 17.54 80.37 81.39

5 75.63 84.31 84.91 15.09 79.64 80.00

6 77.88 90.65 89.80 10.20 84.09 83.41

7 77.12 89.22 89.22 10.78 82.73 82.73

8 68.29 92.78 92.31 7.69 79.09 78.50

9 73.73 91.18 90.63 9.37 81.81 81.31

10 75.42 86.27 86.41 13.59 80.46 80.54

Average 76.45 88.61 88.77 11.23 82.04 82.05

The table shows individual results as well as the average results of the 10-fold CV run using 97 features. FDR: false discovery rate.
doi:10.1371/journal.pone.0021887.t003
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used in our method due to the utilised PPIs from HPRD. On the

other hand, we used only TF interaction as opposed to all PPI.

Negative examples were chosen randomly.

The yeast PPI prediction method by Guo et al. [19] achieved

,87% in terms of accuracy. Their training set of PPI was again

much larger than in our study. In addition, the ,87% accuracy

was only achieved with the negative examples chosen from non-

co-localised proteins, meaning proteins that are not functional in

the same cell compartment. On all other tested data sets they used

the prediction accuracy drops below 80%. They tested their

prediction method on yet another independent dataset and

claimed ,87% accuracy although the reported result was only a

measure of the sensitivity, (only positive examples were input to

the model for classification). Thus, the accuracy of their model

could not be properly accessed.

Pietre et al. [17] achieved a prediction accuracy of 75% on PPI

data for Saccharomyces cerevisiae gathered from DIP and MIPS. Their

method does not require a set of negative PPI examples. It was

evaluated on a set of 100 random positive examples from the

databases and a negative set of 100 examples gathered from the

literature.

Van Dijk et al. [20] predicted interaction between specific TF

families and achieved for different families varying prediction

accuracy ranging from 60–90%. A comparison of the performance

of their approach to our method is difficult since it is not clear how

they constructed the negative data set.

Analysis of published work in prediction of either PPIs or TF

interactions from sequence data alone reveals, in general, four

major drawbacks in methodology:

i/ Symmetry problem in the representation of pairs of

interacting proteins

ii/ Different feature-vector lengths, due to different protein

sequence lengths

iii/ Sequence similarity of proteins that bind identical protein

partners, leading to biased models

iv/ Missing negative set of protein interactions for training an

appropriate model.

The first two problems deal with the representation of features,

while the remaining two strongly affect the prediction performance

of a system employed for classification. Our approach utilised a

stringent methodology for the representation of a pair of TFs, thus

not having a symmetrical effect while creating TF pairs (see

Materials and Methods). Protein sequences of TFs vary in their

length. In this study, a representation that is not dependent on the

length of the AA sequence of a TF was implemented (see Materials

and Methods). The nature of the feature representation approach

utilised, ensures that a feature vector representation for any pair of

TFs is always of the same size.

Proteins that have a high sequence similarity might have the

same binding partners [52]. This could lead to a bias in

performance assessment, which uses a CV scheme. For this

reason we applied a filtering step before the model evaluation. We

identified interactions where TFs with high sequences similarity (as

defined previously in Materials and Methods) have identical

binding partners and in such a case excluded all but one of the

interactions (see Materials and Methods). In this manner we made

sure that we did not introduce a bias based on sequence similarities

of the TFs into our prediction methodology.

The problem that still exists is the relatively small number of

training examples, both positive (interacting) and, in particular,

negative (non-interacting) pairs. The lack of datasets of non-

interacting TFs is a huge disadvantage. The same obstacles as in

the PPI prediction task are evident [53]. Tuning parameters of

machine learning algorithms on its own is not sufficient to

compensate for inadequate real negative examples, which are

necessary to develop high-performance classification systems. One

common practice is to choose random negatives, assuming that in

such random selection the proportion of actually interacting pairs

is very small [18,19,54,55]. Another common approach is to

choose negative interaction partners that are not functional in the

same cellular compartment [53,56]. The latter approach can be

argued to introduce a strong bias e.g. it leads to unrealistic high

accuracy, and also cannot be applied in the case of predicting TF

interactions, due to the localisation of TFs in the nucleus where

they are functional. The random selection of negative examples in

our study attempt to cover cases of non-interacting TF pairs with

different levels of complexity (see Materials and Methods). The

random selection of negatives TF pairs has its limitations. The

performance of the system as presented here might not reflect the

real performance, because some of the negatively denoted

interactions can represent real interactions that are not yet

experimentally verified or are not contained in the considered

interaction databases. This has an influence on all performance

measures, which might be in reality different. In particular, an in-

depth experimental investigation into the group of false positive

predictions might be of interest, because these would contain

possible new true interactions that are not yet known. Neverthe-

less, the absence of a real set of non-interacting gene products, has

been shown to be the bottleneck in all studies that dealt with either

PPI or TF interaction prediction. In addition, during the task of

predicting TF interactions, one has to deal with a relatively small

set of positive interactions available for training as opposed to the

larger number of positive examples in PPI prediction task. This is

an additional shortcoming for developing models for predicting

TF interactions with higher performance. It is also noteworthy

what kinds of interactions are considered to form the positive set of

interactions. Here, we are only interested in interaction types that

can possibly lead to the formation of a protein (TF) complex.

Thus, we only considered three types of interactions (MI:0195 -

covalent binding, MI:0407 - direct interaction, MI:0915 - physical

association) from the PSI-MI classification [46]. All interactions

that we downloaded from the respective databases (see Materials

and Methods) were filtered according to these three types of

interactions. In this manner we excluded many interactions (e.g.

chemical reactions between two proteins) that do not contribute to

the formation of a protein complex. Unfortunately this reduced

the already small set of available interactions between TFs even

further.

It is known that not all residues in a protein are equally

important as some are important for function and binding while

others can be exchanged without such a loss of function [57]. The

parts of a protein that interact with another protein are normally

very short (often between 3 and 8 residues) [58]. The present study

focused on the complete AA sequence of the TF. Further studies

could incorporate methods for predicting the importance of

certain AA residues in the sequence [59], e.g. through conserva-

tion analysis for protein-protein interfaces [60,61] or protein

domains.

Nevertheless, even though the task of predicting TF interactions

is in a way more difficult than the prediction of general PPIs for

the simple reason that negative samples have to be created by the

same functional types of proteins (TFs) that exert their TF function

in the same cellular compartment, the method applied here is able

to achieve very good performance. The advantage of the method

lies in its simplicity of feature representation and the number of

features used. These results were achieved even though the

Predicting Human Transcription Factor Interactions
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resulting model did not require a large amount of prior knowledge

such as sequence motifs, domains, and gene expression data, to be

taken into account.

Supporting Information

Table S1 531 Features used for creating the feature
vectors. The table shows the 531 features that we used to create

the feature vectors representing individual TFs. The individual

columns hold the following information: feature number, the

identifier of the AAIndex database, authors of Reference, title of

reference, journal of reference.

(XLS)

Table S2 97 features selected through feature selection.
The table shows the 97 features selected through the feature

selection. Column 1 contains the feature number as selected by the

algorithm for feature selection. Column 2 contains the corre-

sponding feature position in the complete feature vector of 3,186

features. Column 3 shows if the feature is representative for TF 1

or 2, which form the interaction. Column 4 shows from which

respective section of the sequence the feature was extracted.

Column 5 shoes the respective feature number from Table S1.

(XLS)

Table S3 Comparison of different classification meth-
ods. The table shows the different methods used for classification

of either PPI or TFs in comparison to our method. It provides, a

short description of each method as well as the performance.

(XLS)
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