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Abstract

he yearly output of scientific papers is constantly rising and makes it often impossible for the individual
¥ cscarcher to keep up. Text mining of scientific publications is, therefore, an interesting method to auto-
imate knowledge and data retrieval from the literature. In this chapter, we discuss specific tasks required
¢ text mining, including their problems and limitations. The second half of the chapter demonstrates
¢ various aspects of text mining using a practical example. Publications are transformed into a vector
pace representation and then support vector machines arc used to classify papers depending on their
ontent of kinetic parameters, which are required for model building in systems biology.

. Introduction

Since the advent of written language scientific advances are com-
municated in the form of text-based scientific publications. One
of the major aims of text mining (TM) in the life sciences is to
transfer the text based information into databases for storage,
casy accessibility, and further processing. Up to now, this infor-
mation transfer is heavily dependent on human experts who curate
biological information in the text and further map it onto database
entities utilizing ontologies or controlled vocabularies. Despite
the endless number of biological databases, most information is
still contained within the wealth of scientific publications. The
sheer volume of the documents makes automated systems for
searching and indexing the contained information indispensable
to aid the human curation effort.

Two terms often encountered in TM are “Information
Retrieval” and “Information Extraction.” Information retrieval
relates to the task of finding documents with relevance to a pre-
specified search query. The query can be of arbitrary complexity
(c.g., all documents related to systems biology, all documents
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that contain the terms “polymerase” and “DNA,” etc.). As one
can already deduce, information retrieval has a huge impact on ]
forms of information technology, ¢.g., search engines for the
World Wide Web where a document would be considered a web
page. Information extraction, on the contrary, is a type of infor.
mation retrieval with the task of automatically extracting struc-
tured information from within unstructured documents. The
structured information to be extracted has a well-defined domaip
(e.g., protein names, gene names, numbers, etc.).

In a perfect world scenario, an automated computerized sys-
tem would combine the concepts of information retrieval and
information extraction. A collection of scientific documents is
searched regarding pre-defined criteria (e.g., all documents rele-
vant to systems biology). Each scientific text of the sub-collection
is parsed by the system and analyzed toward identification of bio-
logical entities (e.g., proteins, genes, chemicals, drugs, species,
etc.), physicochemical entities (¢.g., constants, rates, etc.), numer-
ical entities (e.g., numbers), and relationships between them (e.g.,
reactions, interactions, processes, ctc.). The found relationships
are mapped onto existing database entities and accompanying
information of the relationships is stored (¢.g. binding constants,
half-life data, reaction velocities, ctc.). No human interaction
would be necessary to extract these relationships and the system
is able to populate such a database for any volume of documents
(e.g., the whole of Medline.). Unfortunately, up to now several
problems influence the quality of a system that would fulfill all
these requirements without any human interaction. For a better
understanding of the encountered obstacles, the following sec-
tions contain a closer look at specific tasks that are required for
the implementation of such a system.

2. Specific Tasks
Within Text Mining,
Their Problems,
and Limitations

2.1. Format Conversion

The first problem that one encounters when dealing with text
documents is the digital format of the text itself. Automated TM
almost always requires the underlying text to be in ASCII or
related format (e.g., Unicode for more complex encoding). The
biggest resource of biological knowledge is scientific publications.
Full-text articles of these publications are often only distributed
in PDF format. A straight-forward conversion from PDF to
ASCII text is currently not possible without the loss of at least
some information, which could prove critical in the assessment of
the information contained within the document itself. Research
in this field is currently conducted outside the field of life sciences
which is natural, given that the roots of TM lie within the field of
information technology. Apart from PDF documents, several

| 2.2, Identification
| of Word and Sentence
¢ Boundaries

2.3, Part-of-Speech
Tagging
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projects such as, for example, PubMed Central (http:/www.
pubmedcentral.nih.gov) focus on gathering full-text articles that
do not violate copyright restrictions in XML format. XML format
is ASCII based and offers on top a simple annotated structure
within a document that can be easily parsed and further processed
by a computer program (e.g., specific tags for titles, sections,
etc.). With more and more publishers (e.g., BioMed Central
(http://www.biomedcentral.com), Public Library of Science
(http: //www.plos.org), etc.) adopting an open access policy of
their content, collections of full-text scientific articles, such as
PubMed Central, are steadily growing, but the mass of informa-
tion is still only available in formats that are not easily translated
into a machine readable encoding.

Despite the rudimentary structure within the XML formats that
e.g., PubMed Central offers it is still a challenge for automated
computerised systems to identify single word and sentence bound-
arics (often denoted to as Tokenization). The former is of impor-
tance while identifying entities of interest within the text, while
the latter influences more the semantic and syntactic ambiguity
while establishing relationships between identified entities. For
example, an interaction of two proteins is most likely but not
exclusively conveyed within the same sentence:

«

. and it could be shown that protein A and protein B
interact.”

VS.

“ ... as could be shown for protein A. An interacting partner,
protein B, is similarly ...”

Automated part-of-speech (POS) tagging of words in sentences is
another field of research conducted in information technology.
Here, the aim is to annotate words in a sentence or phrase with
its corresponding part of speech (e.g., verb, noun, adjective, etc.).
This annotation is of help while identifying entities and establish-
ing relationships between them (e.g., identify nouns in the sen-
tence, identify verbs that connect nouns, etc.). Tasks related and
often processed together with POS tagging are stemming and
lemmatization. While either are closcly related, stemming reduces
words to their word stem or root (e.g., “interacted” and “interac-
tion” are reduced to “interact”), whereas lemmatization maps words
to their lemma or base form (e.g., “good” is a lemma of “better™).

The task of identifying entities in text is often denoted to as
“Named entity recognition” (NER). Word sense disambiguation
plays an important role in NER. Especially in the life sciences,
words with several meanings often appear disproportional.
Examples are words used for genes or proteins that resemble
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2.5. ldentification
of Relationships
Between Entities

English words in natural speech, such as, for exa.mple the
Drosophila genes “decay,” “off,” “blue,” etc., which might relat
to a property of the gene but which would not be easily identifieq
by an automated system as a gene. Another example would be the
denomination of a gene that resembles another biological entity,
e.g., a protein. These problems could be avoided with the estap.
lishing of a formal naming convention for all biological entitieg,
Despite efforts in this direction (1, 2), it is still far from being
complete, commonly accepted, or utilized (3). Automated sys.
tems for word sense disambiguation try to overcome such prob-
lems by taking, for example, POS tags into consideration to
identify nouns in text, which does not necessarily help in mapping
the found text entities onto existing database entities.

The aforementioned tasks and their individual limitations infly-
ence theidentification of relationships between entities. Automated
systems still struggle with semantic ambiguity that is often
encountered in the English language. A sentence read by a human
reader can have several different meanings, depending on where
the reader puts the stress within the sentence. Such sentences are
generally difficult for computer software to analyze. It becomes
even more difficult when relationships among entities span
through several sentences. Even trained human curators with a
sufficient biological background are not able to fulfill the task
with a 100% accuracy.

3. Biomedical
Ontologies
“and Text Mining

Ontologies are foremost conceptual models. They try to establish
a unifying representation and systematical order for entities, con-
cepts, and relationships between them in a hierarchical manner
for unambiguous and consistent sharing of knowledge over dif-
ferent domains. The Open Biomedical Ontologies (OBO, www.
obofoundry.org) initiative is a collaborative effort to create guide-
lines for the development of biomedical ontologies. In addition,
it gives an overview of biomedical ontologies currently under
development. An example for a biomedical ontology is the well-
known and studied Gene Ontology (2) (GO, www.geneontology.
org). An example of an early TM system that focuses on the QO
is GoPubMed (4) (www.gopubmed.org), which categorizes
results of a PubMed (www.ncbi.nlm.gov/pubmed) search based
on GO terms and concepts, thus letting a possible user navigate
abstracts through these categories rather than through a list of,
e.g., authors or publication titles. .
One of the main criticisms of ontologies and their application
in the biomedical domain is that an ontology will always be an
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unfinished product that can be improved and that they often do
not follow stringent standards (5, 6). In addition, the creation
and the research of ontologies were not driven by the need of
controlled vocabularies with hindsight to biomedical TM. The
main obstacles for the application of ontologies within the scope
of biomedical TM are the nonstandardized ontology language,
the earlier mentioned inconsistency in naming convention for
biological entities and concepts, and the incompleteness of ontol-
ogies (7). Nevertheless, research into ontologies and their appli-
cation within biomedical TM is currently of a huge interest and
more and more TM systems are developed that rely on
ontologies.

4. Examples

 of General Text

i Mining Systems
| in the Biomedical
i Domain

TM systems in the biomedical field can be categorized broadly
into two categories: (1) general TM systems and (2) specialized
TM systems. The former systems do not focus on a specialized
field of biology and are capable of retrieving either documents or
co-occurrences to a variety of biological questions. The main aims
of a researcher in utilizing such a tool are twofold. First, to filter
out documents of interest to a particular search question (e.g.,
“Retrieve all documents that contain a particular gene or pro-
tein” “Retrieve all documents where protein A occurs with
another protein in the same sentence” etc.) and, second to find
literature evidence for testing a hypothesis (¢.g., “Does evidence
in the scientific literature exist that protein A and protein B inter-
act?” “Does evidence in the literature exist that the drug X is
related to the disease 127 etc.). Examples of such tools are mani-
fold. For example, ZHOP (8) uses gene/protein names as hyper-
links between sentences and abstracts of the PubMed database.
The TM system is gene/protein centered, which means that the
starting point for utilizing the system is a gene/protein name.
Based on the name, sHOP finds sentences in the literature that
contain the gene/protein name with other genes/proteins, thus
creating an easily searchable network around the input gene /pro-
tein linked to the underlying literature. EBIMed (9) also, based
on PubMed abstracts, has the goal to present information about
UniProtKB/Swiss-Prot proteins, GO annotations, drugs, and
species found in the abstracts in the form of an easy accessible
table. The advantage of this TM system is that the input query
into the system can be of arbitrary complexity. Standard search
queries that would be utilized to query PubMed directly can be
used. The resulting set of abstracts is then analyzed toward
the former mentioned biological concepts and the results are pre-
sented in the form of a table, where each entry is linked to the
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underlying sentence and abstract where the information g
found, as well as to biological databases for more information ¢
the biological entity/concept. This table highlights all CO-0ceyy.
rences of biological entities and concepts found in the corpug of
abstracts that was retrieved by the search query. The table caq p,
ordered in manifold ways to satisfy the user needs. Another sjm;.
lar approach is the TM system AliBaba (10) that also works oy
PubMed abstracts. Based on a protein or disease, it creates a net.
work in the form of a graph, which visualizes interacting concepts
such as cells, compounds, discases, drugs, enzymes, proteins,
genes, species, and tissues mined from the PubMed abstracts. The
extracted information is again linked to the underlying text
source, which is made readily accessible to provide the meang
for the user to confirm the accuracy of the extracted associationg
by hand. i

All these systems provide in essence a method to query a lit-
erature corpus and retrieve abstracts/sentences that match a pre-
specified search query. The results are presented in different
formats, while the focus is on different biological entities. It is a
quick way to find fast information about a biological entity of
interest. The extracted information is linked to the text source,
and in most cases, to other biological databases, which enables a
user to verify by hand how much confidence he gives to certain
extracted information.

The biggest downside of these TM systems is that they only
work on PubMed abstracts. The wealth of information buried in
the full-text articles is thus not considered at all. Many of the
problems and limitation in TM systems mentioned above play a
role for disregarding the full-text articles in the first place. The
main reason for considering only the abstracts is their easy acces-
sibility, which in case of PubMed can be obtained free of charge
in XML format for public institutions.

5. Measuring
Success

After a system for information retrieval or extraction has been
developed, its performance has to be measured. This can, for
instance, be done by calculating sensitivity and specificity, while in
the field of information retrieval, more often recall and precision
are used. To make things even more confusing, sometimes also
the positive, and, respectively negative predictive values are used
to characterize a classifier.

The connection between all these terms is displayed %ﬂ
Fig. 1 for a binary classification problem. An example can i
reality be true or false and the classifier can give a positive or 2
negative result, leading to four possible outcomes. In two cascs
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Reality

True False

N Positive Predictive Value =
Positive | TruePositive {TP) False Positive (FP) g Precision

TP/ (TP +FP)

Test

Negative | False Negative(FN) True Negative (TN} EI:) Negative Predictive Value

TN/ (TN + FN)
] )

Sensitivity = Specificity =
Recall= True Negative Rate =
True Positive Rate 1— False Positive Rate
TP/(TP + FN) TN/ (FP + TN)

Fig. 1. Possible outcomes of a two-class classification problem. In the different scientific
communities, different measures for classification success are used. Examples are the
sensitivity and specificity system or the recall and precision system. For further details,
see text.

(true positive and true negative), the prediction was correct,
whereas in the other two cases (false positive and false negative),
it was wrong. Sensitivity is now defined as the number of true
positive predictions divided by all positive examples and specific-
ity is the number of the true negative predictions divided by all
negative examples. Thus, sensitivity measures how well a classifier
recognizes true examples and specificity measures how well false
examples are recognized. The term recall is actually identical to
sensitivity, while precision is identical to the positive predictive
value. Thus, precision is the fraction of positive predictions that
are correct. A noteworthy feature of the sensitivity /specificity sys-
tem is its independence of the ratio of true to false examples.
Precision, in contrast, does vary with sample composition.

A specific pair of sensitivity and specificity values often depends
on the discrimination threshold used by the classifier, and thus a
single classifier can produce a whole range of sensitivity /specific-
ity pairs. Consider, for example, the PSA level that is used in pros-
tate cancer diagnostics. If the threshold level used for positive
classification is low, the test will generate many positive predic-
tions but with a high error rate, i.e., sensitivity is high, but speci-
ficity is low. If, however, a high threshold is used, there will be
only few positive predictions but most of them will be correct.
This means sensitivity is low, but specificity is high. To compare
classifiers, it is, therefore, not sufficient to compare single sensitivity,/
specificity values, but instead the whole range of generated values
has to be considered. A convenient way to do this is the use of a
receiver operator curve (ROC), which displays true positive rate
(sensitivity) as function of the false positive rate (1-specificity).
The area under the receiver operator curve (AUC) ranges from 0
to 1 and is a popular measure for the quality of a classifier. For a
more in-depth discussion on the use of ROCs see (11).
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6. An Example
of Text Mining for
Systems Biology

6.1. Document
Representation

As a specific example, the problem of finding scientific public,.
tions that contain kinetic parameters is now described. Biochemicy
reaction systems are usually modeled by a set of ordinary diffe;.
ential equations (ODEs) that describe the changes in the concey.
tration of a biochemical species. The rate of a reaction is a functigp
of the concentrations of the substrates, products, and of kinetjc
parameters that are part of the kinetic law. The irreversible
Michaelis—Menten kinetics is a simple kinetic for the case that one
substrate, with concentration ¢, is irreversibly converted into ,
product:

V.

max

c
V= s
K, tcg

Vo denotes the maximal rate for high substrate concentrations
and K, is the half-saturation concentration (Michaelis—Menten
constant). Other, more complicated, kinetic laws exist that depend
on further parameters such as half-life and activation, respectively,
inhibition constants. For the quantitative modeling of biochemi-
cal reaction networks, it is important to know the values of the
various parameters and to know to which kinetic type they belong,
Whereas most reaction networks are well described qualitatively,
detailed quantitative values are missing or scattered in various sci-
entific publications.

The aim was, therefore, to build a classifier that could sepa-
rate few publications that contain values for kinetic parameters
from those that do not (see also (12)). For this purpose, 4,582
randomly chosen full-text documents were downloaded from 12
different journals. From the full set, a keyword search generated
791 candidate articles. The keywords consisted of names and
identifiers of constants (such as “Michaelis—-Menten” or “Km”)
and words describing functions (such as “degradation,” and “acti-
vation”) or components (“enzyme”). Reading those 791 docu-
ments revealed that only 155 actually contained kinetic parameters,
corresponding to a precision of 20% of this method. However,
this first selection step was necessary, because it would have been
a prohibitive amount of work to read all 4,582 articles.

The representation most often used for the application of certain
machine learning techniques is the vector space model (VSM)
(13). This model describes each document as a set of propertics
called features. This leads to a comparable representation of texts,
regardless of their prior format, size, or structure (book, journala
article, and paragraph). It becomes irrelevant whether the infor-
mation is presented in the Results or the Methods section of 2

6.2. Feature Ranking
and Dimensionality
Reduction
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rescarch article, or what the exact content is (e.g. differences in
nomenclature usage or spelling variants). Another advantage is
the suitability of such vector formats for machine learning tech-
niques, which can easily gather hints on the importance and
influence of a particular fact (a feature) or certain nonlinear com-
binations of those.

Representing documents using the VSM, a fixed vector of
features observed in the entire document collection (a feature
vector) is calculated. Next, for each single document, an instance
of this feature vector is filled with values describing the relevance
of each feature for this particular document. Some features or
properties might be present (to some degree) in one document,
but absent in others. A single document can contain a certain
term, with a certain number of occurrences, or not. The corre-
sponding coordinate in the document vector, an instance of the
feature vector, is assigned a value reflecting this occurrence, that
is, the term frequency (z#f). After tokenization and stemming of
the texts, a fixed feature vector can be extracted consisting of
every word stem encountered. Instances of the feature vector are
then filled with the corresponding occurrences of each term for
this particular document, resulting in one document vector per
publication. The underlying approach is called a bag-of-words, as
all words are represented by their frequency only, regardless of co-
occurrences, collocations, and context. Additionally, one might
think of different weighting schemes to represent the significance
of a term for describing a certain document. Most weighting
schemes (14, 15) comprise a combination of a term’s local weight
(i.e. within the document) and its global weight (i.e. in the docu-
ment collection). However, in this study, only zf'was used to con-
struct the feature vector. Processing of the complete corpus (791
documents) resulted in approximately 44,000 different features.

The described way to represent documents leads to a very high
dimensional feature vector. These extreme dimensionalities can
negatively affect the classification performance. On the contrary,
one can argue, that the more information is used to describe the
documents, the better will be the classification model generated
by the machine learning algorithms. It is, therefore, an important
step to find an appropriate balance between these opposing
effects. To pick the most relevant features of a document (or the
whole document collection), different ideas were applied. In
every language, there are a lot of so-called stop-words, common
terms which do not provide any information toward discriminat-
ing documents, as they tend to appear with the same frequency in
every kind of text (e.g. and, are, it, and with). These words can be
removed, as well as very rare words, appearing in only a few (or a
single) documents. A pruning of such words helps to reduce the
dimensionality of the vector space.
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6.3. Classification
Performance and
Feature Number
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Fig. 2. Sorted results of the nonparametric Mann—Whitney test used to rank all words in
the feature list obtained from the analysis of the document corpus (796 scientific
papers). From the 44,000 features, only 532 have a p-value smaller than 0.05.

Furthermore, the remaining features can be ranked according
to their importance by some appropriate statistical test and then
only the most important terms are used for the classification algo-
rithm. To calculate such a ranking, the non-parametric Mann-
Whitney test was used, which does not rely on special assumptions
about the data distribution (such as normality). The test calcu-
lates for each of the approximately 44,000 different features a
p-value, indicating how important this feature is for separating
the two classes. Figure 2 shows the p-values for the 2,000 most
significant features. There are only relatively few features with
small values, while the large majority of terms seems to be evenly
distributed between the two classes of documents (resulting in
large p-values). Although we perform multiple tests (namely,
44,000), corrections for multiple testing are not required since
we are only interested in the relative ranking and not the absolute
significance of each term.

Several classification runs were performed to study the depen-
dency between feature number and classification performance.
For this purpose, only a certain number of top ranked (Mann-
Whitney) features were included in the support vector used by a
support vector machine (SVM) (16). Classification was performed
with RBF (radial basis function) kernel and tenfold cross-validation
to avoid over-fitting. Figure 3 shows the connection between
the area under the receiver operator curve (AUC) and the num-
ber of used features. As can be seen, the AUC rapidly increases

6.4. Classification
Performance with
5,000 Features
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Fig. 3. Diagram showing the dependence between the area under the ROC curve (AUC)
and the number of best ranked features used for classification. The features were ranked
using a Mann—Whitney test (see Fig. 2).

with increasing feature number and then approaches a maximum
at 5,000 features (which was the number of features given as
input to the SVM). Thus, in this case, already a small number of
top-ranked features are sufficient to give a good classification per-
formance. Furthermore, the classification ability of the SVM does
not degrade with feature number (it even seems to increase
slightly). This confirms the well-known observation that the per-
formance of SVMs is quite robust against a surplus of features.

Finally, the classification performance is examined when using a
feature vector with 5,000 features, which gave the best AUC
value of the studied cases. Figure 4 shows the ROC curve for this
situation with an AUC of 0.90.

Support vector machines can provide a probability estimate
on how likely it is that an example belongs to one class or the
other. By using different probabilities as threshold for the classifi-
cation (normally 0.5 is used), different combinations of sensitivity
(true positive rate) and specificity (1-false positive rate) can be
obtained. All points on the surface of the ROC can be reached by
an appropriate choice of the classification threshold.

Another way to visualize this connection is displayed in Fig. 5.
The diagram shows directly how sensitivity and specificity vary
with the used threshold. In general, there is a trade-off between
sensitivity and specificity. However, depending on the problem, it
might not be necessary to have high values for both measure-
ments. In our case, sensitivity is not as important. Since a potentially




316 Kowald and Schmeier

ROC for classNr = pos

1.0 —
NN

q ,.r-"'"‘"'f“—r /

: / "
] 7
| 7 0.90240

0~0 LRI B LINE B 2 | L LA L rrry LERLSLAL 2L ) T T l LI B 2 ) | LENE RS BAR § i LI R B
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

True Positive Rate
o
o

Fig. 4. Receiver operator characteristic (ROC) curve for a support vector machine classification using a feature vector with
the 5,000 top-ranked features.

Sensitivity and Specificity vs. Probability Threshold
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Fig. 5. Achieved sensitivity and specificity (and geometric mean of both) as a function of the used probability threshold.
Support vector machines can calculate a probability value indicating how “sure” the classifier is that the example belongs
to the predicted class. If different probability thresholds are used for classification, different combinations of sensitivity
and specificity are obtained. .
very large number of publications with kinetic parameters does
exist in the literature, it is not so important if one is not found ¥ 5
(false negative). But false positives are very costly, because those
papers have to be inspected manually before the error is detected
(labor costs). Therefore, a high specificity is desirable. That means
a large threshold value will be chosen to obtain a high specificity.

7. Gonclusions

Interest and research in biomedical TM has increased greatly over
the last decade. Currently, information retrieval and extraction
provide the means to support a variety of biomedical studies.
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biology has been described. The aim was to train a machine learn-
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lications. The relevance is defined by their content of kinetic
parameters that are necessary for the in silico modeling of bio-
logical pathways. Several TM sub-tasks such as format conver-
sion, POS tagging, stemming, feature representation with the
help of the vector space model approach, and machine learning.
have been discussed during the analysis. It could be shown that
with the help of TM techniques it was possible to fulfill the task
with an acceptable performance. However, several difficulties
were encountered during the course of the study. The automatic
conversion from PDF documents to plain ASCII text was imper-
fect. The used software was not able to resolve all words and
symbols encountered in the PDF documents correctly. Future
advances in conversion technology and optical character recogni-
tion (OCR) software will definitively improve PDF-based TM.
Shifting the focus away from PDF documents toward full-text
publications in HTML or XML format would solve this problem.
An example of such a format is ePub, which has in 2007 been
endorsed by the International Digital Publishing Forum (www.
idpf.org)asa new standard for electronic publishing. Furthermore,
other feature representation schema or machine learning algo-
rithms might lead to improvements as well. However, even
though the created system for the automatic classification of doc-
uments from a specialized biological domain is not perfect, it
could be demonstrated that such a system can already now be of
great value for scientists seeking kinetic information from text
sources.
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Chapter 20

Identification of Alternatively Spliced Transcripts
- Using a Proteomic Informatics Approach

| Rajasree Menon and Gilbert S. Omenn

Abstract

We present the protocol for the identification of alternatively spliced peptide sequences from tandem
mass spectrometry datasets searched using X!Tandem against our modified ECgene resource with all
potential translation products and then matched with the Michigan Peptide to Protein Integration

| (MPPT) scheme. This approach is suitable for human and mouse datasets. Application of the method is

illustrated with a study of the Kras activation-Ink4/Arf deletion mouse model of human pancreatic duc-

tal adenocarcinoma.

- 1, Introduction

‘ By means of alternative splicing and posttranslational modifications,
one gene can generate a variety of proteins. Alternative splice
' events that affect the protein coding region of the mRNA will
give rise to proteins which differ in their sequence and activities.
Alternative splicing within the noncoding regions of the RNA can
result in changes in regulatory elements, such as translation
enhancers or RNA stability domains, which may dramatically
influence protein expression (1).

Alternative splicing has been associated with such diseases as
growth hormone deficiency, Fraser syndrome, cystic fibrosis, spinal
| muscular atrophy, and myotonic dystrophy (2, 3). In cancers,
there are examples of every kind of alternative splicing, including
: alternative individual splice sites, alternative exons, and alterna-
tive introns (4). A number of public alternative splice databases
have recently become available, including ASD, HOLLYWOOD,
and ASAP II. Each of these repositories contains transcript
models that have been constructed from either expression data
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