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Finding Kinetic Parameters Using Text Mining
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ABSTRACT

The mathematical modeling and description of complex biological processes has become
more and more important over the last years. Systems biology aims at the computational
simulation of complex systems, up to whole cell simulations. An essential part focuses on
solving a large number of parameterized differential equations. However, measuring those
parameters is an expensive task, and finding them in the literature is very laborious. We de-
veloped a text mining system that supports researchers in their search for experimentally
obtained parameters for kinetic models. Our system classifies full text documents regarding
the question whether or not they contain appropriate data using a support vector machine.
We evaluated our approach on a manually tagged corpus of 800 documents and found that
it outperforms keyword searches in abstracts by a factor of five in terms of precision.

INTRODUCTION

VER THE LAST FEW YEARS, there has been an explosion of information in biology. The sequencing of

more than a hundred genomes, including the human genome, gave detail about thousands of genes.
Efforts are under way to identify the proteins encoded by those genes. High-throughput technologies, es-
pecially microarray techniques deliver information about the expression of these genes under different con-
ditions (Ideker et al., 2001). Yeast two-hybrid methods yield networks of protein interactions (Li et al.,
2004; Grigoriev, 2003).

The next step forward toward a more comprehensive understanding of the underlying biological system
is now to integrate these data. The goal is to no longer study individual genes or proteins, but to learn how
these molecules interact to form a living cell. However, doing so requires a large amount of data as para-
meters for the appropriate models and methods. Many of these parameters have been experimentally mea-
sured, by finding them in the vast amount of available literature is extremely difficult.

In this paper, we describe text mining methods for the detection of scientific papers dealing with spe-
cific aspects of systems biology (i.e., parameters for kinetic models). To motivate our research project, we
start the paper with an introduction into systems biology and into text mining.

Systems biology

The emerging field of systems biology aims at understanding and modeling biological systems as sys-
tems at the molecular and higher levels of organization (Kitano, 2002). These systems may be gene ex-
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pression networks, signal transduction pathways, metabolic networks, or combinations of them. In contrast
to previous approaches, systems biology endeavors to quantitatively model and simulate complex biologi-
cal processes and systems comprising thousands of chemical compounds and reactions. One wants to un-
derstand the structure, dynamics, control pattern, and design principles of the systems under investigation.
Concerning size and fidelity of the models, there are two tendencies: First, the development of whole cell
models, comprising virtually all compounds and processes in a eukaryotic cell. Second, very elaborated and
detailed models are necessary for individual processes and events in organisms that are of general signifi-
cance or show a very special behavior.

The kinetic modeling of biological reaction networks deals with the question of how the concentrations
of substances change over time. The dynamics are determined by (a) the concentrations of substrates and
products, (b) the structure of the whole reaction network, and (c) the kinetic parameters of the involved en-
zymes. To understand what kinetic parameters are and why they are important we have to look at enzyme
kinetics.

Enzyme kinetics

For a biochemical reaction system, it is practice to use a set of ordinary differential equations (ODEs) to
describe the changes in the concentration of a biochemical species. In a system of n species with the con-

centration ¢; (i = 1, . . . ,n) and r biochemical reactions with the rates v; (j = 1, . . . ,r) one may write
dC] o o
—dt = filcr,ca, - ooy C) = npvy RV oo g,
dC2 o o
o = falcr,ca, - ooy ) = n21vy vy + o+ ng, (1)
dc
—d;" = fulC1.cas o ooy Cm) = MgVt F Ry + Ry,

where the quantities n; denote the stoichiometric coefficients, i.e. the molecularity in which species i en-
ters reaction j. A coefficient is zero if a reaction j does not consume or produce the species i; it is smaller
or bigger than 0 (usually —1 or 1, depending on molecularity), if the species i is degraded or produced in
reaction j, respectively. We present an example, a simplified glycolysis model, in Figure 1.

The rate of a reaction is a function of the concentrations of the substrates and products of the reaction
and of parameters. These parameters may be the concentrations of effectors as well as kinetic constants
with different physical units. The actual expression for a rate depends on the experimental knowledge about
the kinetic characterization of a reaction and, partially, on the modeling purpose. Typical expressions for
reaction rates are explained below. Variables cg and cp denote the concentrations of substrate and product,
respectively.

All reaction kinetics are based on the mass action law, introduced by Guldberg and Waage in the 19"
century. It states that the reaction rate is proportional to the probability of a collision of the reactants. This
is in turn proportional to the concentration of the reactants to the power of the molecularity in which they
enter the specific reaction. For a simple reaction like

S +S,—2P ()
this reads
v=vi —v_ =kycsles2 — k_c3 3)

where v, and v_ denote the forward and backward rates. k. and k_ are the forward and the backward rate
constants, respectively (i.e., proportionality constants). In the general case, the rate expression for reversible
linear kinetics reads (indices run over all substrates or products of this reaction, respectively).

v =ky H Cs; — k717[Cpl 4)
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FIG.1. A simplified glycolysis model. P, glucose, considered as external; Ay, ADP; A3, ATP; S, Pool of triosephos-
phates DHAP and GAP; S,, 3-phosphoglycerat, 2.3-diphosphoglycerat; vy, upper glycolysis; v,, vs, lower glycolysis;
v3,V4, 1,3-biphosphoglycerat-bypass; vs, ATP consumption.

Sometimes reactions are considered as irreversible, i.e. they are supposed to proceed only in one direction.
The rate expression for irreversible linear kinetics is

v =k Tle, 5)

As opposed to simple chemical reactions, enzymatic reactions show saturation. The dependence of the rate
on the substrate concentration gives a hyperbolic curve. For low substrate concentrations, the rate is pro-
portionally to cg. With increasing substrate concentrations, v increases slower and asymptotically approaches
a maximal value. This can be explained by a two-step process: first, the reversible binding of the substrate
to the enzyme (corresponding to the collision of molecules in the mass action law) and second, the irre-
versible release of the product from the enzyme. If the enzyme concentration is much lower than the sub-
strate concentration, then the enzyme molecules are soon saturated with substrate. This performance is re-
flected in the Michaelis-Menten type of kinetic expression, which reads for irreversible transformation of
one substrate:

_ Vinax * €s (6)

KM +c S

Vmax denotes the maximal rate for high substrate concentrations and K, is the half-saturation concentration
(Michaelis-Menten constant). Vi, and K, are the kinetic parameters that control this specific kinetic law.
There are, however, several other types of kinetics for an enzymatic reaction. For a reversible uni-uni-re-
action (one substrate, one product), we have

V ihax Ccg — V max - cp
_ _Kus Ku.p ™
1 +-55 4 ¢p
vs Kup

where V.., Vinax are the maximal rates of the forward or backward processes, respectively, and Ky s, Ky p
are the Michaelis-Menten constant of the substrate and product, respectively. To model this type of reac-
tion properly, more kinetic parameters have to be known than in the irreversible case. V.« and Kj, are so-
called phenomenological parameters as opposed to the elementary rate constants k4 and k—. The former
can usually be measured in standard biochemical experiments, while the latter are often hard to assess, at
least for complex reactions. For reactions with more substrates or products the rate expression depends on
the concentrations of all reactants and a large number of kinetic parameters.

Another type of rate-substrate-dependence is the sigmoidal behavior. This is usually explained by the
fact that the enzyme consists of several subunits. Each of the subunits can catalyze the reaction, but their
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performance may be altered due to the binding of a substrate to another subunit. A typical example for sig-
moidal kinetics is the Hill equation
Vinax * (CS)h
= T\ 8
YT K+ () ®

where V.« denotes again the maximal rate, Kp the binding constant, and / the Hill coefficient (another ki-
netic parameter). The Hill coefficient was originally identified with the number of subunits, but may also
be a lower rational number with typical values between about 2 and 6. Another type of sigmoidal kinetics
with other types of kinetic parameters is the rate expression according to Monod, Wyman, and Changeux:

n—1
Kg + KTL<M)
- 1+ KgS
Yy = —rmaxts n 9
(1 + Kgcs) | 4 oLt Kies ©
l + KRCS

Here, it is assumed that the enzyme has several subunits, the subunits may be present in an active or an in-
active conformation, and there is an equilibrium between both conformations. Kz and Ky are the binding
constants to the active and the inactive form, respectively, L is the equilibrium constant between both forms,
and n is the number of subunits.

An important function of enzymes is the ability to be regulated by effectors. The effectors may bind to
the enzyme, to the substrate or to complexes formed by both. In each case we obtain different rate equa-
tion. The rate equation for a Michaelis-Menten type of reaction inhibited by an effector binding to any form
of the enzyme (so-called non-competitive inhibition) reads

Vinax'Cs

b= (Ky+cs) (1 + IC(_I,) (10)

(cy, inhibitor concentration; K, inhibitor dissociation constant). The increase of the rate by an activator may
in the simplest form be expressed by the following rate equation

k‘CS + k"KS
" (K + cs) (1 +[C(—A) (i

A

In this equation c,4 is the concentration of the activator, Kg and K4 are the dissociation constants for sub-
strate and activator, and k and k" denote elementary rate constants of product release.

In the model of Monod, Wyman, and Changeux activation and inhibition may be easily included by as-
suming that an effector pushes the equilibrium toward the active or the inactive state leading to an altered
equilibrium constant:

d + Kiep)"

L= L Kaear

12)
The number of kinetic parameters increases with the number of substrates and/or products, with the num-
ber of effectors, and with the level of detail of the description of individual events in the considered reac-
tion. In the rate equations listed above, the concentration of the catalyzing enzyme is already considered to
be multiplicatively included in the values of the elementary kinetic constants or in the maximal rate. This
is appropriate for the modeling of metabolic networks under the assumption of constant enzyme concen-
tration. If the production or the degradation of the enzymes shall be considered, these quantities have to be
replaced in an appropriate way (like k — cg'k’).

For the quantitative modeling of biochemical reaction networks it is important to know the structure
of the network (which will not be considered here), the kinetic type of each reaction (whether it exhibits
linear, hyperbolic or sigmoidal kinetics, whether it is considered to be reversible or irreversible, which
is the number of substrates), and it is especially essential to know the values of the various kinetic pa-
rameters.
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FIG. 2. Resource collections. Starting from 4582 publications loaded from 12 online journals, we found approxi-
mately 12% to contain relevant information, estimated by a manual inspection of 200 randomly selected publications.
Applying a simple keyword filter reduced possible candidates to 791 and resulted in a precision of this method of
19.5%. As we do not know the percentage of relevant papers contained in the remaining 4582 — 791 = 3791 publica-
tions, the recall is unknown. Classifying the 791 filtered publications with our SVM model yielded a precision of 60%
at 50% recall.

Problems we aim to solve using text mining and machine learning

The kinetic modeling of biological systems depends on sets of different kinetic data and values measured
in expensive experiments. Such data are published in thousands of scientific articles. It is infeasible for hu-
mans to read and analyze this number of papers within reasonable time constraints. However, to build a
concrete model (e.g. for a certain metabolic pathway of a given species), one needs only a selected subset
of kinetic parameters that is very likely to be found in only a few papers—but finding those is a challenge.
To build up a model one has to gather, sort out, read, and understand a large number of publications.

We performed a study to quantify this claim; 4582 randomly chosen full text documents from 12 dif-
ferent journals were downloaded. Of those, 791 were selected by performing a search with 20 different key-
words (Fig. 2). Reading those 791 documents, which meant about two person months of work, revealed
that only 155 actually contained kinetic parameters, corresponding to a precision of 20% of the method.
This task of reading all 800 articles only focused on deciding whether or not a paper contained any rele-
vant parameters, while annotating each single parameter would definitely take a longer time.

Our project aims at developing methods for supporting systems biology researchers in their information re-
trieval needs. The problem was divided into the retrieval and the extraction of publications relevant to kinetic
modeling. In this paper we explain our ideas and give results for the information retrieval step. Its goal is to
identify appropriate documents obtainable from online journals by using text mining methods. To this end, we
implemented and tested different methods for natural language processing, text processing, and text classifica-
tion. A number of combinations were evaluated with respect to their individual strength and the overall per-
formance of the classification process. Although there is still room for substantial improvements, our current
system already resulted in a drastic reduction of the manual work necessary to filter out irrelevant documents.

Text mining

Text mining refers to computational methods for the automatic analysis of semi-structured text (i.e., text
written in natural language). Text mining for molecular biology research has gained considerable attention
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in recent years (Blaschke et al., 2002; de Bruijn and Martin, 2002). This happened mainly due to the in-
creasing availability of full text papers and the development of high-throughput methods which generate
thousands of data items per experiment, each item conveying a small piece of information, such as gene
expression or proteome profiling. In such projects, it is vital to be able to enrich the primary experimental
data with additional information about the objects being examined. Text mining aims at automatically find-
ing such information by analyzing existing publications, a task which is otherwise performed manually.
Typical applications of text mining in the life sciences are extraction of protein interactions (Koike et al.,
2003; Proux et al., 2000), clustering of genes according to functional descriptions (Raychaudhuri et al.,
2002b), or the prediction of sub-cellular locations (Stapley et al., 2002).

Text mining combines statistical methods from machine learning, exploiting differences in word distributions
or word co-occurrence, with natural language processing (NLP), which tries to understand natural language by
analyzing grammatical structures of sentences and paragraphs. Text mining algorithms require an intensive pre-
processing phase in which documents are retrieved and converted to ASCII text, word and sentence boundaries
are recognized, and words are reduced to their respective stems. Documents are eventually represented as a high
dimensional document vector, where each dimension represents a word stem in the document collection, and the
word coordinate corresponds to some measure for the frequency of this word in the document combined with a
measure for the frequency of the word in the entire collection. Additional dimensions can be generated from the
documents (e.g. to represent authorship, number and type of figures, length, year of publication).

We approached the problem of finding papers containing kinetic parameters by reformulating it as a clas-
sification problem, which we solved using support vector machines (SVM) (Vapnik, 1995). The SVM is
trained using a set of manually labeled documents. Using this set, the SVM learns to discriminate docu-
ments which are relevant from those which are not relevant by finding discriminatory properties of the doc-
ument vectors. For instance, papers on kinetic data frequently contain phrases such as:

* (L) Jier = (/12.0 ms)exp(—t/12.0 ms)0.00487 mM/ms (..)”
* “(..) high affinity for calcium (Kpyeo = 107 — 10° M~ 1) (.)”
* “(..) Km values for methionine of 24 microM and approx. 1.8 mM (..)”

Given such sentences in positive examples, the SVM will correlate the appearance of words such as km,
microM, or affinity with a positive prediction. Once the training is finished, the SVM has learned a model
which can be applied to classify arbitrary new documents, that is documents that have not been processed
within the training phase. Since the classification is never perfect, we carefully analyzed the results in terms
of classification precision and accuracy.

Papers available online are mostly provided in PDF or PostScript format. For mere processing, the most
adequate format is plain ASCII text, lacking markup or formatting instructions and containing every single
word in clear text. It is far easier to implement computer routines for analyzing ASCII text than from PDF.
A common and simple way to convert from PDF to ASCII formats is the usage of tools like PDFToTEXT
(Noonburg, 1996). Nevertheless, problems arise even during this basic step. For instance, some converters do
not work properly for all versions of PDF. Others have problems with handling multi-column texts, which is
used for most journals layouts. Hyphenation leads to additional difficulties and possible ambiguities. Impor-
tant information often is presented in tables, and some tools do not solve the conversion properly (Table 1).

Extraction of features

Despite a mere extraction of single term occurrences from texts, one can think of more ways to appro-
priately describe and represent documents by using the latter’s properties. Terms are given explicitly in the
texts and are therefore easy to identify. This subtask is called tokenization, resulting in a list of words (called
tokens, in the same order as in the document), identified by defined word-boundaries. Words can be sepa-
rated from each other by white spaces or a variety of punctuation marks, such as colons, periods, paren-
thesis, or quotation marks. Regrettably, not every such mark delimits single words. For instance, parenthe-
ses can be parts of compound words, or delimit words, as in

e “(..) these cells produced P2Y(11) mRNA (..)” and
e “(..) the neighbouring Cuneate nucleus (Cu) area (..)”,
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TABLE 1. THE 16 WoRrDS WiTH THE HIGHEST #-VALUES

Term t-value
K 8.91
Half-life 8.66
Vimax 7.95
Turnover 6.75
Enzyme 5.85
Activity 5.26
Radation 5.24
Di- 5.18
Taining 5.14
Michaelis-Menten 5.13
Lineweaver-Burk 5.09
Degradation 4.86
7-fold 4.86
Vimax/Km 4.79
Degrade 4.68
Enzymatic 4.65

The list coincides well with what a expert user would use as
keywords, except for the terms radation, taining, and di-, which
are probably artifacts of the PDF converter.

plus one might find quotation marks in
e “(..) using lithium-3',5"-diiodosalicylate, 5" SAR is (..)”

An additional problem comes with the separation of sentences. In general, each period delimits two sen-
tences. But in some cases, there are ambiguities regarding the correct splitting, e.g.

e “(..) agar diffusion method for Y. enterocolitica, whereas (..)”
e “(..) covers 866 b.p. Immediately upstream, (..)”
e “(..) and another 10 b.p. T-rich stretch. In conclusion, (..)”

All these cases might not be regarded as problematic by a human reader. Even a novice within a particu-
lar field of research would be able to resolve most of the ambiguities of this kind. Defining rules and pat-
terns for automatically analyzing texts on this basis, on the other hand, is a challenge. While this task might
be much easier for prose of newspaper articles, it gets more complicated for scientific texts. Here, we en-
counter many standard and non-standard abbreviations, or large and complex compound names (e.g., pro-
tein names).

Feature generation

Having a text in its tokenized form is the first step toward feature extraction. Not only every single to-
ken should be regarded as a feature of the document, as some words or even phrases describe the same ac-
tivity, entity, or concept. The simplest way to group words lies in finding their correct word stems. Terms
like activates, activated or activation can then be counted as occurrences of the more abstract term activat.

Document representation

The representation most often used for the application of certain machine learning techniques is the vec-
tor space model (VSM) (Salton et al., 1975). This model describes each document as a set of properties,
called features, and their respective relevancies to this document. This leads to a comparable representation
of texts, regardless of their prior format, size, or structure (book, journal, article, paragraph). It becomes ir-
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relevant whether the important and needed information is presented in the Results or the Methods section
of aresearch article, or what the exact contained facts are (e.g., differences in nomenclature usage or spelling
variants). Another advantage is the learnability of such vector formats, as machine learning techniques can
easily gather hints on the importance and influence of a particular fact (a feature) or certain combinations
of those.

Representing documents using the VSM, a fixed vector of features observed in the entire document col-
lection (a feature vector) is calculated. Next, for each single document, an instance of this feature vector is
filled with values describing the relevance of each feature for this particular document.

Some features or properties might be present (to some degree) in one document, but absent in others. A
single document can contain a certain term, with a certain number of occurrences, or not. The correspond-
ing coordinate in the document vector, an instance of the feature vector, is assigned a value depicting this
occurrence, that is, the term frequency (tf).

After tokenization and stemming of the texts, a fixed feature vector can be extracted consisting of every
word stem encountered and the number of documents containing this particular stem at least once (see be-
low). We then fill instances of the feature vector with the corresponding occurrences of each term for this
particular document, resulting in one document vector per publication. As an example, look at a simple col-
lection of two short documents, containing only one single sentence each:

e doc;: “K+/H+ exchanging activity can explain the lower K+ contents of NHA1 cells grown without
K+ limitation.”

e doc,: “This behaviour was reported in the Sctrk1D mutant, and was ascribed to an active K+/H+ ex-
changer.”

This example would result in the feature and document vectors presented in Table 2. The underlying ap-
proach is called a bag-of-words, as all words are represented by their frequency only, regardless of co-oc-
currences, collocations and context. Nevertheless, a huge variety of other document features can be ex-
tracted or generated, as we will present in the next section. Additionally, one might think of different
weighting schemes to represent the significance of a term for describing a certain document. Most weight-
ing schemes (Glenisson et al., 2003; Strasberg et al., 2000) comprise a combination of a term’s local weight
(i.e., within the document) and its global weight (i.e., in the document collection). In our approach, we used
the #f*idf metric, combining the term frequency with the inverse document frequency, calculated as

tf¥idf = (1 + log tf;0) * (1 + log (N/dfy)) (14)

where tf, ; is the number of occurrences of term ¢ in document d, N is the number of documents, and df; is the
number of documents containing ¢ (called document frequency). The #f assigns high values to the most com-
mon terms in a document, the idf weight favors generally uncommon terms. Therefore, the more often a cer-
tain term appears in a single document, but the lesser it occurs throughout the document collection, the higher
its weight in describing this specific document. Note that taking the logarithm of each frequency decreases the

TABLE 2. SAMPLE FEATURE AND DOCUMENT VECTORS FOR THE Two DOCUMENTS DOC; AND DOC,

Vector of Number of documents Feature vector for doc Feature vector for doc;
word stems containing the stem (simple occurrences only) (simple occurrences only)

exchang
activ
K+

H+
report
explain
was

the

NN — = NN
—_ 00 = =
—— = =

1 1

Instead of #f*idf weights, we show the simple occurrence statistics for the word stems only.
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influence of large N or ff; ;. Adding one to each logarithm prevents the values from being zero in cases where
a term occurs in every single document (N = df;) or a term occurs exactly once in a document (tf, ; = 1).

Dimensionality reduction by feature set transformation

Using a multitude of terms, each forming a coordinate, leads to very high dimensions of the vector space
we describe our documents in. These extreme dimensionalities negatively affect the computing performance.
On the other hand, the more information is used to describe the documents, the more precise is the represen-
tation for applying machine learning algorithms. The problem of overfitting is another important issue. It means
that the learned classifier fits the selected training data too much, degrading the generalization performance.
While the model predicts the labels of the training set very precisely, unseen data could be predicted badly.
Especially for large dimensions, avoiding overfitting becomes very important—here, the number of training
objects (i.e., documents) often is much smaller than the number of features describing these objects.

It is a major step to find an appropriate balance by selecting useful information (i.e., terms) only. To pick
the most relevant features of a document (or the whole document collection), we followed different ideas.
When describing documents using the contained words, it is unnecessary to list every single word (or stem).
In every language, there are a lot of so-called stop-words, common terms which do not provide any infor-
mation toward discriminating documents, as they tend to appear with the same frequency in every kind of
text (e.g., and, are, it, with). These words can be filtered before further processing the remaining text, as
long as they are not contained in basic parts of a concept. On the other hand, the least frequent words, ap-
pearing in only a few (or a single) document, provide just as little help. They might be simple misspellings,
infrequent spellings, uncommon usages of out-dated identifiers, or author names. A pruning of such words
helps to reduce the dimensionality of the vector space.

Different methods for the principal component analysis (PCA) have been proposed. In the following, we
describe Student’s ¢-statistic (Gosset, 1908; Ewens and Grant, 2001) to rank and select the most convenient
terms as an example. For each term in a document collection, a z-value is calculated as:

X — 7]

= —F/———— (13)
S | Sy?
m n

X and Y are the mean values for the occurrence of the term in the classes X and Y (positive and negative),
S is the standard deviation regarding X and Y, and m and n are the number of elements in X and Y, re-
spectively. The z-values for each term occurring in both the positive and the negative training set state their
ability to discriminate both classes, with high values depicting the most appropriate terms.

The #-values calculated for each term allow for an easily adoptable feature vector size. As all terms are sorted
by their corresponding f-value, only the n terms allowing for the best discrimination of the two classes can be
considered. Each document is then represented by the occurrence statistics of these n terms in the document.
This step reduces the size of the feature vectors and therefore the dimensionality of the vector space to n.

Statistical learning

Traditionally, machine learning theory evolved as an area of artificial intelligence. It deals with the de-
velopment of computational learning techniques. Learning in this case always means deducing an appro-
priate model by automated analysis of data sets. The model is then applied to gather new knowledge from
new and previously unseen data. Common techniques of machine learning can be summarized and sub-
sumed into four categories:

* Supervised learning: finding a function which maps input data to a set of outputs
e Unsupervised learning: gaining insights in the structure of inputs

* Reinforcement learning: learning to react to observations

e ‘Learning to learn’: learning an inductive bias, based on previous experience

(for an introduction to machine learning, see Mitchell, 1997).
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In text or data mining, supervised learning is often referred to as a classification of data or learning
from labeled samples. Given a (manually) labeled set of training examples, a machine learning algorithm
learns a mapping from input data (the documents) to a fixed set of output data (the labels, or categories).
For the training set, these labels are known, and the result of the algorithm is a model which predicts the
label of new data. In our case, we find a binary classification problem: deciding on the relevance or ir-
relevance of texts concerning their usefulness for kinetic modeling. In contrast, the so-called clustering
techniques do not rely on labeled data, but depend on similarity measures to compare to data objects
(e.g., texts). These algorithms result in clusters or groups of documents, each with a certain inner or pair-
wise similarity.

Reinforcement learning describes the learning of appropriate actions to control sequential processes. An
agent explores its environment by perceiving its current state and proposing possible actions. These actions
are graded and rewarded by the environment, and the agent tries to maximize the rewards accumulated dur-
ing the process.

Support vector machines

The statistical learning technique used in our approach are the SVM (Vapnik, 1995). We encounter a bi-
nary classification problem (a document can either be relevant or irrelevant) and can easily transform each
document into a sparse representation using the vector space model with the documents’ features. A sparse
representation of a document omits all vector coordinates with a value of zero (i.e., all terms non-existent
in this particular document).

The representation of documents using their document vectors in a high-dimensional vector space would
ideally lead to two easily distinguishable clouds of objects. These clouds would represent the groups of rel-
evant and irrelevant documents. A separation hyperplane between both clouds could then be used for a clas-
sification decision: a new object can be found either on the relevant or the irrelevant side of the hyperplane
(Fig. 3). Thus, the norm, a vector orthogonal to the hyperplane and passing through the new object, would

O hyperplane

ositive O
p ® ® ©

samples

negative

. samples

FIG. 3. Separation of the positive and negative class samples by a linear hyperplane. Circles, positive samples (rel-
evant documents); squares, negative samples (irrelevant documents).
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have a certain distance and direction from the hyperplane, where its sign alone can be used to predict the
objects’ position and class;

y' = sign((w,x’) + b) (15)

with y" € {—1,+1} being the predicted class (—1: irrelevant, +1: relevant) of x" and (w,b) determining the
hyperplane separating both classes.

The purpose of SVMs is to calculate a representation of the hyperplane which best separates both classes
of objects in the vector space. Additionally, a maximal margin is introduced, in such a way that all sam-
ples lie outside a certain distance from the hyperplane. The margins on either side are called the margin
hyperplanes H; and H,:

Hy:{wx)+b=—1
H> : {wx)+b=+1 (16)

For this purpose, from both classes of objects sets of support vectors are identified, representing either class,
and lying on the corresponding margin hyperplane (Fig. 4). Support vectors are the most critical members
of the existing document vectors, and are selected due to their information content toward building a dis-
criminating hyperplane. Extreme outliers do have a smaller impact than vectors in the twilight zone, where
both classes might form almost intersecting parts.

Linear learning machines can be constructed on this basis using a dual description. Representing the nor-
mal vector w as a linear combination of training samples,

!

w= zaiyixi (17)
i=1

i=

(I = number of training samples x with label y; a; = scalar coefficients), we can reformulate the decision
function for classifying a new documents x’ as

[
') = sign (Z ') + b) (18)

i=1

margin hyperplane

margin
positive O O O

samples

negative

D |:| samples
support vectors |:| D

FIG. 4. Margin hyperplanes separating both classes. Objects representing support vectors (dark) lie on one of the two
margin hyperplanes.
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Training samples and new objects never act through their individual attributes any more, but appear as a
pairwise inner product, with «; being the so-called dual variables to be calculated.

In all cases mentioned above, the two datasets are separable by a simple linear classifier. This is gener-
ally not the case for most problems. When dealing with documents, there will always be some overlapping
parts (i.e., terms occurring with similar frequencies in at least a certain amount of samples from both classes).
The idea to overcome this problem is to map the input data to an even higher dimensional space (called a
Hilbert feature space H), where a linear separating hyperplane exists. This approach is called the kernel
technique and was first introduced in (Aizerman et al., 1964) as the method of potential functions. A ker-
nel function can easily be calculated as a function in the original vector space, but behaves like a inner
product in H (for further details, see Joachims, 2002; Cristianini et al., 2000; Markowetz, 2001). While tun-
ing our system, we tested linear and polynomial kernels.

SVMs are perfectly suitable for classification tasks in many applications and have been proven to lead
to produce acceptable results (Lewis, 1997). SVMs are very easy to use, and provide a good and robust
performance in terms of accuracy and speed. The computational efficiency is due to the absence of local
minima and the sparse represenation of feature vectors. In contrast to some other statistical learning meth-
ods (e.g., neural networks), the model (i.e., the support vectors) can give hints for interpreting the distrib-
ution of objects and their inherent structure. Another major advantage is the omission of strong hypothesis
on the data. Naive Bayesian learning, for instance, relies on the assumption that (single word) terms occur
completely independent from each other, which is definitely not the case. In contrast to rule-based meth-
ods, expert knowledge and heuristics are not required for training a SVM — besides manual annotation of
the training sample, a process needed for all supervised learning approaches.

Evaluation

To evaluate how good different systems perform on similar tasks, there are various measures indicating
the quality of their predictions. The precision of a method in our case states the percentage of documents
correctly labeled as positive or relevant. It is influenced by the number of true positive predictions (TP) and
the number of false negative predictions (FN; Table 3). The recall shows how many of the relevant docu-
ments the systems finds (using TP and the number of false positive predictions [FP]):

Precision = _TP Recall = TP (19a,b)

TP + FP TP + FN

For instance, a precision rate of 70% would indicate that from all documents predicted as relevant, 70%
are relevant and 30% are irrelevant in truth. A recall of 80% describes the fact that of all relevant docu-
ments as labeled by a human expert, 80% have been found by the system, but 20% are missing. Ideally,
one aims for a classification algorithm that gives 100% recall (all positive examples are found) and 100%
precision (all examples that are predicted as positive, are positive). Unfortunately, there is a natural trade-
off between recall and precision. A high recall is often associated with a low precision and vice versa.

TABLE 3. CATEGORIES FOR THE FOUR POSSIBLE OUTCOMES OF A PREDICTION

True label of the document (reality)

Relevant Irrelevant
Predicted label (system)
Relevant TP = true positive FP = false positive
Irrelevant FN = false negative TN = true negative

Depending on the label (i.e., class) of a document as provided by a gold standard (e.g., human expert) which reflects the
reality, a prediction can be either true or false. For instance, a FN indicates that the document is relevant (i.e., positive) in
reality, but the system falsely predicted it to be irrelevant. A document irrelevant in reality and predicted as such would be
marked as a TN.
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MATERIALS AND METHODS

In this section, we shall discuss the methods and techniques we combine to a work flow for the gather-
ing and representation of publications, and the training, validation, and usage of a SVM to classify publi-
cations according to their relevance for kinetic modeling. An overview is shown in Figure 5.

Corpus generation

We developed a program that automatically retrieves publications in PDF format from a set of online
journals. For this purpose we chose twelve journals that focus on biological areas that make use of kinetic
data (Journal of Biological Chemistry, Proceedings of the National Academy of Sciences, Yeast, Journal of
Medical Microbiology, Biophysical Journal, Cell, FASEB Journal, Journal of Cell Biology, Journal of Cell
Science, Molecular and Cell Biology, Molecular Biology of the Cell, and Molecular Cell). We selected 4582
publications at random, covering the years from 1993 to 2003. To estimate the overall frequency of publi-
cations of those journals that do contain relevant kinetic data, a random sample of 200 publications were
read and classified by an expert. It turned out that 12% of all papers were positive, meaning that they con-
tained parameter information relevant to kinetic modeling (Fig. 2). With this sample size, the 95% confi-
dence interval (CI) for this proportion extends from 8% to 17.5%. This means that there is a 5% chance
that the entire collection would contain less than 8% or more than 17.5% of positive documents.

In a first preliminary step we tried to enrich the fraction of positive papers by selecting candidate arti-
cles based on a keyword search. The idea is that every article relevant to kinetic modeling makes use of
certain common terms to present its subject. Irrelevant articles, on the other hand, will definitely not con-
tain any of these terms. Simple tools like GREP provide the possibility to filter complete collections of pa-
pers in a serializable and performant process. After conversion to plain text, only those publications were
chosen that contained at least one of the following keywords: Km, Menten, vmax, kcat, keq, hill kinetic,
hill equation, enzyme kinetics, kinetic parameter, kinetic data, kinetic model, mathematical model, rate equa-
tion, half-life, and half life. After this selection step, 791 papers remained. Those were read carefully by an
expert. 155 of these publications actually contained relevant kinetic data, leaving 636 which had to be read

Interface to Manual annotation Feature Generation
eJournals | | - Format conversions
i - Tokenization
- Stemming
Random download Partitioning
Fixed sets for 5-fold v
l cross-validation \ Feature Selection
) - Term occurences
Feature Generahon - T-statistic
- Format conversions -
- Tokenization Tuning
- Stemming - Parameter selection
] ,
Best SVM model & SVM:
fixed feature set Learning on training
l set
SVM:
Classification of Classification of test
arbitrary new data set

FIG. 5. Work flow for gathering and processing of publications, and training, validation and usage of a model learned
by a SVM. After choosing the optimal model determined by the cross-validation, only the steps on the left side are
needed to classify arbitrary new publications. Methods for feature generation are identical in training and application
phases.
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but revealed no useful information. Thus, the overall fraction of positive publications was 19.5% with a
95%-CI of 16.8% to 22.4% (Schmeier et al., 2003).
The work presented in this paper aims at improving this process with text mining methods.

Extraction and generation of features

We use the TREETAGGER kit (Schmid, 1994) for feature generation. This kit provides a tokenizer, part-
of-speech-tagger, and stemmer as a single command line application. It first splits a text into its sentences,
and then performs a tokenization of each sentence using default word-boundaries, such as blanks, colons,
commas etc. For the splitting of sentences, a list of common abbreviations (using periods) exists, such that
a sentence remains intact. The part-of-speech tagger is a probabilistic tagger which estimates transition prob-
abilities with decision trees. It uses the common Penn-Treebank tagset to label the tokens (Santorini, 1990).
An exemplary output of the TREETAGGER is given in Table 4. In this example, both the tokens protein and
Proteins stem from protein and therefore should be counted as an occurrence of the same feature.

Dimensionality reduction

Stemming and exclusion of words appearing only once in the whole document collection led to a vector
size of roughly 66.000 word stems (down from more than 100.000 terms). Table 1 contains the 16 terms
with the highest #-value as examples, and Figure 6 plots the distribution of z-values within the 66.000 terms.
There is a remarkably rapid drop of #-values in the first =2000 words, from where on the remaining 64.000
have a relatively constant, yet very small #-value. This range for instance contains common stop words such
as and (rank 40.395, r-value 0.5) or the (rank 64.600, t-value 0.1). Those words are considered inappropri-
ate for document discrimination.

Support Vector Machine (SVM's")

We used the SVM implementation SVM & (Joachims, 1998). From a list of labeled examples, repre-
sented by their respective feature vectors, the SVM learns a model. This model consists of the predicted
support vectors for each hypothesis (i.e., positive/relevant and negative/irrelevant classes). In a second step,
the unlabeled (because new) documents are assigned a class based upon the learned model. The feature vec-
tor of these new documents have to be calculated from the same, fixed vector used before. A SVM classi-
fier then computes the distance from each object to the separating hyperplane, and the output of SVM/ 8"
contains these distance vectors and their direction indicated by a positive or negative sign. Values greater
or equal than zero in our case depict a documents’ positive label and thus comprise all relevant publica-

TABLE 4. A SAMPLE OuTPUT FROM THE TREETAGGER KiT

Token Part-of-speech-tag Stem
the DT the
protein NN protein
data NNS datum
extracted VVN extract
from IN From
various 1) various
sources NNS source
SENT
Proteins NPS protein
are VBP be

The sentences (parts shown in the first column, one line per token) are ana-
lyzed with lexical and contextual rules and the most likely Part-of-speech-tag is
then assigned to each token. Additionally, the tool produces the word stem
needed for our methods.
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FIG. 6. Distribution of the 7-values from all 66.616 single words.

tions found in the new collection. SVM/¢" is a command line tool and allows for large scale batch pro-
cessing and adaptions in parameter settings. The latter will be described in the following section.

Tuning the system

We performed a systematic parameter optimisation to find the best set of parameters for the support vec-
tor machine. In our setup there are four parameters that can be optimized. First there is the feature vector
length. With this parameter it is possible to control overfitting and reducing the computation time for the
optimization step. In our case the first argument is of greater relevance, since the time needed for the cal-
culation is not critical for the application.

Overfitting occurs when the dimensionality of the underlying feature vector is too high and so two classes
are separable too easily. We varied this parameter from length 50 to length 1000 in steps of 50 words. Further-
more, we investigated linear and polynomial kernels of degree two and three. To keep the computational effort
in reasonable bounds, we restricted ourselves to these kernels. Finally, different values for the earlier described
kernel parameters ¢ and j were investigated. We varied the c-values on a logarithmic scale from 107> to 10°.
The j-value can be used to apply different weights for the penalties for misclassifying positive and negative ex-
amples. This parameter was varied from 0.1 to 1 in steps of 0.1 and from 1 to 9 in steps of 2. To find the op-
timal values for the four parameters, we ran the SVM/&"" 9240 times with 791 articles and different settings.

Validation

The validation was done using a five fold cross-validation. For this purpose, we randomly split the over-
all corpus (791 papers) in five sets of equal size. Each of the five subsets is consecutively chosen as test
set while the other four subsets were used as training sets. For a given set of parameters the SVMs were
trained on the training set and evaluated on the test set (Table 5). Finally, we computed the average preci-
sion and recall values across all five trials. The advantage of this method is that in summary all data are
used for training as well as for testing and thus best use is made of the available data resources. The dis-
advantage is that the training algorithm has to be executed five times (for a five fold cross validation), lead-
ing of course to a five fold increased computing time.
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TABLE 5. PARTITIONING OF 791 ANNOTATED PAPERS FOR THE FIVE FOLD CROSS-VALIDATION

4 sets for training = 632 publications 1 set for testing = 159 publications

~123 relevant publications =508 irrelevant publications =32 relevant publications =128 irrelevant publications

Five groups of equal size were chosen as fixed sets. In strict rotation, each set acted as the test set, while the SVM
trained its model on the other four combined sets. We chose the members for each set at random to maintain the rele-
vant/irrelevant ratio of about 1 :4 within each set.

To calculate the parameter optimization with all 9240 different parameter combinations and fivefold cross-
validation took 625 min on an AMD Athlon™ MP 2200+ Linux machine with 2 GB of memory and two
CPUs.

RESULTS

SVM parameter optimization

Figure 7 shows a scatter plot of the recall versus precision values of all 9240 tested parameter combina-
tions. A few parameter combinations gave a very high precision (100%), but the maximal attainable recall
was only 11% (point A). Other parameter combinations lead to 100% recall, but precision is down to 20%
(point C). In this case, the SVM simply predicted all examples as being positive. All positive examples are
now predicted to be positive (100% recall), but specificity is down to the lowest possible value, the frac-
tion of positive examples in the total corpus (20%). At point B, predictions yield a precision of 60% at 50%
recall. For low recall values, the points form a geometric pattern. This is a consequence of how recall and
precision are calculated as fractions of natural numbers. For small numbers this results in discrete values,
which form geometric patterns.

100 —@C
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& 60
®
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40
20
0
0

precision (%)

FIG. 7. Recall versus precision values of the 9240 different parameter combinations that were tested for the support
vector machine (SVM). Each point is the result of a fivefold cross validation over the corpus of 793 publications. Points
A, B, and C are discussed in the text.
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FIG. 8. ROC curve of the results of the SVM parameter optimization. Instead of recall versus precision, as in Fig-
ure 5, here recall versus the complement of specificity (100-specificity) is shown. Thus, the y-axis shows the percent-
age of true positive versus the percentage of false positives (x-axis).

Another commonly used way to display this type of data is the ROC (receiver operating characteristic)
curve shown in Figure 8. Basically, the percentage of true positive versus the percentage of false positives
is displayed. In this case the ideal shape is rectangular, with the optimal point having 100% true positives
and 0% false positives. Figure 8 shows that roughly we can get 60% true positives (recall) with only 20%
of the false positives.

Single parameter influence

For the SVM optimization shown in Figures 7 and 8 four different parameters were varied (kernel type,
two kernel specific parameters and the feature vector length). To demonstrate how individual parameters
influence the performance of the SVM we picked two points, indicated as “A” and “B” in Figure 7 and
varied one parameter, while the others were kept constant. Point “A” has the highest recall of all parame-
ter combinations that gave 100% precision and is therefore in some sense the best point. However, the re-
call value of 11% is still quite low. We therefore also wanted to test a point with a significantly higher re-
call and chose point “B” that displays similarly good recall and precision values. Table 6 shows the details
of the parameters used for points “A” and “B.”

TABLE 6. DETAILS OF THE KERNEL TYPE AND PARAMETER VALUES USED
FOR POINT “A” AND “B”” THAT ARE MARKED IN FIGURE 7

Point A Point B
Kernel Polynomial Polynomial
Degree Cubic Quadratic
c-value 0.0001 0.01
j-value 3 7
Vector length 250 100
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FIG. 9. Influence of the feature vector length on recall and precision of points A (left) and B (right) from Figure 5.
For low recall values (large feature vector lengths) the calculation of the precision values, true positives/(true posi-
tives + false positives), becomes unreliable because of the small absolute numbers. The 100% precision at a vector
length of 750, for example, was calculated from one true positive and no false positives.

Figure 9 shows how varying the length of the feature vector changes precision and recall for points “A”
and “B.” In both cases recall dropped with increasing vector length and approached zero. The behavior of
the precision seems to differ for large vector length, going down for point “A,” but increasing for point
“B.” However, if the recall gets very low the total number of positive signals from the SVM becomes very
small, leading to large uncertainties in the calculation of the precision.

The c-value is a kernel parameter for the SVM that controls the trade-off between training error and mar-
gin of the SVM. As Figure 10 shows, there are some differences between point “A” and “B.” Most im-
portantly, for point “A” small c-values lead to decline of the recall, while for “B” the recall reaches 100%.
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FIG. 10. Influence of the value of the kernel parameter ¢ on recall and precision of points A (left) and B (right) from
Figure 5. Above a c-value of approximately 0.01, precision and recall vary only moderately with ¢ for both points in-
vestigated. For very small values, however, recall and precision develop differently for point A and B. While recall
tends to zero for point A, it reaches 100% for point “B.”
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Influence of the value of the kernel parameter j on recall and precision of points A (left) and B (right) from

Figure 5. Points A and B behave qualitatively in a similar way, increasing recall and decreasing precision, but the
strength of the response is stronger in B than in A. See the text for a description of the meaning of j.

This then causes the precision to drop to 20%, the frequency of positive examples in the whole data set.
But both points also show a similar behavior in that the values of recall and precision are only weakly af-
fected by c-values greater than 0.01.

The second kernel parameter that was optimized is the j-value. This is a cost-factor, by which training
errors on positive examples outweigh errors on negative examples. Here the situation is quite similar for
the two points (Fig. 11). A large j-value causes the recall to increase and the precision to decrease. For
point “B,” however, this trend is much stronger so that at a j-value of 10, recall and precision are of com-
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FIG. 12. Variation of the threshold of the SVM decision function. Support vector machines calculate a numerical
value that decides how the example is classified. Normally, examples with positive values are predicted to be in one
class and examples with negative values are predicted to be in the other class. In the calculation shown here, only ex-
amples with values higher than a certain threshold are classified. Examples with values smaller than the threshold be-
long to a new group termed unsure. See the text for more details
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parable magnitude (approximately 55%), while for point “A” they are still far apart (14% recall, 78% pre-
cision).

Decision function threshold

Support vector machines calculate a numerical value that decides how the example is classified. This
value is called decision function and can reach small negative or positive values. All examples for which
the decision function is greater than zero are predicted to belong into class one and all examples for which
the decision function is smaller than zero are predicted to belong into class two. We were interested to see
if the results of the SVM can be improved by being more selective and introducing a threshold value, TV,
for the decision function. To be classified, the decision function of an example had to be above +TV or
below —TV. Examples whose decision function lies between —TV and +TV are not classified and are re-
ferred to as “unsure”. The results of this calculation are shown in Figure 12.

As expected the number of examples that fall into the “unsure” group increases with increasing thresh-
old, approaching 100% for a threshold of 1.2 (point A) and 1.6 (point B) respectively. Another trend that
is common to both points is the monotonic decline of the recall value. The more examples belong to “un-
sure” and are thus omitted from classification, the less is the fraction of positive examples in the overall
corpus (recall) that is recovered by the SVM. The only parameter that does benefit from the increased se-
lectivity (threshold) is the precision. For point B the precision, the fraction of true positives among all ex-
amples that are classified as positive by the SVM, increases from 60% to 80%. For point A this effect can-
not be seen, since the precision is already at 100% for a threshold of zero.

DISCUSSION

We are not aware of any other attempts to apply text mining for the detection and extraction of para-
meters for kinetic modeling. However, document classification is currently studied intensively for support-
ing database curators in there selection of documents to read (Yeh et al., 2003) or for the assignment of
genes to function and vice versa (Rindflesch et al., 1999; Blaschke et al., 1999; Raychaudhuri et al., 2002a).
Donaldson et al. (2003) describe a system for the classification of abstracts for consideration in the DIP
database. Using support vector machines, they reach precision / recall of over 90%. The approach in
Faulstich, 2003 automatically decides whether papers describe conserved RNA structures in certain virus
strains. The system reaches 80% recall at 30% precision.

Our own system currently reaches 60% precision at 49% recall and is therefore far from the 92% re-
ported by Donaldson et al. However, comparing classification procedures developed for different purposes
and used on different corpora is usually not possible, since every corpus has its specific bias and every
problem has its specific characteristics. For instance, the Donaldson corpus consists of about 60% positive
and 40% randomly selected negative examples; in our case, even the negative examples are biased since
they contain at least one of the ‘magic’ keywords. Our corpus in this sense consists out of relatively fa-
vorable candidates with certain inherent similarities. We think that distinguishing the true positives from
the true negatives in our corpus is somewhat harder than for arbitrary data. Future experiments will reveal
the precision / recall values concerning the classification of randomly selected and unbiased publications.
We expect at least slight improvements of the prediction quality.

Nevertheless, we are anyway confident that the performance of our system can be further improved. This
can be based on several ideas. (a) Kinetic data is not only presented in continuous text, but very often in
tables and figures. This data is currently inaccessible to our system, since most tables and figures are in-
cluded into PDF documents as images and are therefore lost during the translation from PDF to ASCII. (b)
We are not interested in papers dealing with theoretical aspects of kinetic modeling, where all names of
constants and differential equations also appear, but without any real experimental data. Our current sys-
tem is not capable of separating these two categories. (¢) We encountered several problems in the tools we
use. For instance, TREETAGGER has been developed for newspaper text and sometimes fails to properly sep-
arate words and sentences containing special characters. We also found the PDFToTEXT tool we use to have
difficulties in correctly concatenating multi-column text. (d) Our system currently cannot recognize equal
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entities described by different names, different spellings, or abbreviations. Detecting such synonyms, which
is possible using gene and protein name lists as available in database such as FlyBase (FlyBase Consor-
tium, 2003) or SGD™ (Issel-Tarver et al., 2002), would enhance the information content of the model and
hence of the classifier.

A necessary and essential task is the storage of documents. This can be done using the standard file sys-
tem structure, though some database systems provide dedicated facilities to store textual content or whole
document collections (for instance, Oracle® Text). Database systems use standard SQL queries to index,
search, and analyze text. Different forms of linguistic analysis may be performed as well. The latest im-
provements (see, e.g. Oracle® version 102) even support classification by techniques such as SVM or clus-
tering using k-Means or hierarchical algorithms. Future enhancements of our system are sought to be based
upon such data base options.

The ultimate goal of our project is the creation of a database holding kinetic data for various species.
One comparable database available is BRENDA (Schomburg et al., 2002), which is manually curated and
hence provides few data on only a small set of species. Especially, data on yeast enzymes is included only
to a very low extent. Considering our ultimate goal, we view the results of our current system as very en-
couraging. Compared to the keyword-list approach, we can reach a four times greater precision at the cost
of losing approximately 50% of the documents. High precision is the most important feature for this pur-
pose, since the limiting factor are huamsn who have to read the documents to actually extract kinetic pa-
rameters. Saving their time is important. In contrast, a low recall is tolerable since the number of docu-
ments to be considered can be increased almost to infinity, thus automatically increasing the number of
positives documents.
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